Internal Documentation
Graft.DictLM
Graft.DictLM
Graft.DictLM
Graft.EdgeIter
Graft.Graph
Graft.Graph
Graft.Graph
Graft.Graph
Graft.Graph
Graft.IdentityLM
Graft.LabelMap
Graft.addedge!
Graft.addvertex!
Graft.bfs
Graft.bfs_list
Graft.bfs_subgraph
Graft.bfs_tree
Graft.completegraph
Graft.completeindxs
Graft.decode
Graft.decode
Graft.encode
Graft.export_adjacency
Graft.export_edge_property
Graft.export_vertex_property
Graft.fadj
Graft.fadj!
Graft.geteprop
Graft.getvprop
Graft.haseprop
Graft.hasvprop
Graft.hopgraph
Graft.hoplist
Graft.hoptree
Graft.indegree
Graft.listeprops
Graft.listvprops
Graft.loadgraph
Graft.ne
Graft.nv
Graft.outdegree
Graft.propgraph
Graft.randgraph
Graft.randindxs
Graft.relabel!
Graft.relabel!
Graft.reorder!
Graft.reorder!
Graft.rmedge!
Graft.rmvertex!
Graft.rmvertex!
Graft.seteprop!
Graft.setlabel!
Graft.setlabel!
Graft.setvprop!
Graft.storegraph
#
Base.SparseArrays.SparseMatrixCSC
— Method.
Build an adjacency matrix from an edge iterator
#
Graft.DictLM
— Type.
This label map is used when vertices are assigned meaningful labels. This type uses a dictionary to map labels onto vertex identifies, and a vector to map vertex identifiers onto labels.
Labels can be of any user defined type.
#
Graft.DictLM
— Method.
Construct a label map from a list of labels
#
Graft.DictLM
— Method.
Construct a label map from the internally used vertex identifiers.
#
Graft.IdentityLM
— Type.
The default label map, that indicates the absence of meaningful vertex labels. The usage of this type incurs zero overhead in label resolution.
Since vertices are referred to by their internally used indices, the usage of this labelling scheme can be problematic when vertices are deleted.
#
Graft.LabelMap
— Type.
A type that forward maps labels into internally used vertex identifiers, and reverse maps vertex identifiers into labels.
#
Base.:+
— Method.
Shorthand notation for adding multiple lablled vertices
#
Base.:+
— Method.
Shorthand notation for adding a labelled vertex to the graph
#
Base.:-
— Method.
Remove a labelled vertex from the graph
#
Base.:-
— Method.
Remove a list of labelled vertices from the graph
#
Base.getindex
— Method.
Shorcut to vertex v's out-neighbors in the graph
#
Base.getindex
— Method.
Retrieve the edge dataframe indices for a list of edges
#
Base.getindex
— Method.
Retrieve the edge dataframe indices for all edges in an edge iterator
#
Base.getindex
— Method.
Retrieve an edges' index in the ddge dataframe
#
Base.merge
— Method.
Merge two graphs into one. Currently this method assumes that both graphs have the same vertices, and doesn't combine their data, but does a union on their edges.
#
Base.setindex!
— Method.
Shorthand notation for adding an edge between labelled vertices
#
Base.setindex!
— Method.
Shorthand notation for adding multiple edges between labelled vertices
#
Base.setindex!
— Method.
Change the edge dataframe indices for a list of edges
#
Base.setindex!
— Method.
Change the edge dataframe indices for all edges in an iterator
#
Base.setindex!
— Method.
Change the edge dataframe indices for a list of edges
#
Base.setindex!
— Method.
Change the edge dataframe indices for all edges in an iterator
#
Base.setindex!
— Method.
Change an edge's index in the edge dataframe
#
Base.size
— Method.
Return nv(g) x ne(g)
#
Graft.bfs
— Function.
Standard BFS implementation that returns a parent vector
#
Graft.bfs_list
— Function.
Get the list of vertices at a certain distance from the seed
#
Graft.bfs_subgraph
— Function.
Returns a BFS subgraph, containing explored vertices and all edges between them
#
Graft.bfs_tree
— Function.
Returns a BFS tree, containing explored vertices and only tree edges.
#
Graft.completeindxs
— Method.
Spawn a random sparse matrix denoting a complete graph without self loops. The returned matrix resembles a non-sparse matrix, so it'd be unwise to use this for a large number of vertices
#
Graft.randindxs
— Method.
Spawn a random sparse matrix, sort indices and remove self loops
The number of edges in the sparse matrix may not equal the input ne, and is more likely to be an approximate
#
Graft.reorder!
— Method.
Reorder the edge dataframe to match the order of edges in the index table
#
Graft.reorder!
— Method.
Sort the index entries